
ARTICLE IN PRESS
JOURNAL OF
SOUND AND
VIBRATION

Journal of Sound and Vibration 281 (2005) 417–422
0022-460X/$ -

doi:10.1016/j.

�Fax: +1-4

E-mail add
www.elsevier.com/locate/jsvi
Short Communication

An analysis of a nonlinear elastic force
van der Pol oscillator equation

Kale Oyedeji�

Department of Physics, Morehouse College, Atlanta, GA 30314-3773, USA

Received 23 February 2004; accepted 7 March 2004

Available online 17 September 2004
The one-dimensional, nonlinear elastic force van der Pol oscillator equation is

x
::
þ xj jx ¼ �ð1� x2Þ x

:
; (1)

where � is a positive parameter. The aim of this paper is to see if Eq. (1) has a limit-cycle
and calculate an approximation to this periodic solution. The assumption that Eq. (1) has a limit-
cycle is premised on the fact that it has the same general structure as the van der Pol equation
[1,2]. The existence of limit-cycles is a feature of great practical importance in science and
engineering because many devices can be modelled by such nonlinear systems. Since most, if not
all nonlinear differential equations cannot be solved analytically, it is then of great importance to
investigate the possible existence of a limit-cycle. After putting Eq. (1) in system form, the fixed
points will be determined and the local stability properties of the fixed point determined. The
Lienard–Levinson–Smith Theorem will then be used to show that a unique, stable limit-cycle
exists. The method of harmonic balance can now be applied to calculate an analytic
approximation to the periodic solution. The result obtained is then compared with numerical
integration of Eq. (1).

Eq. (1) can be written in the form of a coupled, first-order system of equations

dx

dt
¼ y;

dy

dt
¼ �jxjx þ �ð1� x2Þy: (2)
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Inspection of these equations show that there is a single fixed point at ðx; yÞ ¼ ð0; 0Þ: Since the
trajectories in phase space are solutions of

dy

dx
¼

�jxjx þ �ð1� x2Þy

y
; (3)

then the curve along which the trajectories in phase space have zero slope is

y0ðxÞ ¼
1

�

� �
jxjx

1� x2
: (4)

Similarly, the curve along which dy=dx ¼ 1 is the x-axis. From these two equations it can be
concluded that the path of the trajectory for a point far from the fixed point moves towards the
origin [3]. The argument for this is given below.

The stability of the fixed point at ðx; yÞ ¼ ð0; 0Þ is studied by assuming that jxj and jyj are small
and then writing in Eq. (1) as

x
::
þ xj jx ’ �x

:
; �40: (5)

The equations of the trajectories, under this condition, are given by

dx

dt
’ y;

dy

dt
’ �jxjx þ �y: (6)

Now consider the function V ðx; yÞ given by

V ðx; yÞ ¼
y2

2
þ 1

3
jxjx2

X0: (7)

Therefore,

dV

dt
¼ y

dy

dt
þ jxjx

dx

dt
¼ ð�jxjx þ �yÞy þ jxjxy;

and making the substitution for x
:
and y

:
from Eq. (6) gives

dV

dt
¼ �y2

X0: (8)

Thus, trajectories near the fixed point, ðx; yÞ ¼ ð0; 0Þ; move away from it, and it can be concluded
that the fixed point is unstable.

Consequently, a typical trajectory of a point starting far from the fixed point spirals towards the
fixed point and the one in the neighbourhood of the fixed point spirals outwards. Since such
trajectories cannot cross each other, it follows that there exists at least one closed curve in the
phase space. Hence Eq. (1) has at least one stable limit-cycle.

This result also follows from the Lineard–Levinson–Smith theorem [1,4]. The equation

x
::
þf ðxÞx

:
þgðxÞ ¼ 0 (9)

has a unique periodic solution if f and g are continuous, and (1) if there exists some number a40
such that f ðxÞo0 for �aoxoa; and f ðxÞ40 otherwise; (2) xgðxÞ40 for jxj40; (3) f ðxÞ ¼ f ð�xÞ
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and gðxÞ ¼ �gð�xÞ; with Z 1

0

gðxÞdx ¼ 1; (10)

(4) Z 1

0

f ðxÞdx ¼ 1; (11)

and (5)

GðxÞ ¼

Z 1

0

gðuÞdu; (12)

where

Gð�aÞ ¼ GðaÞ: (13)

Applying this theorem to Eq. (1) then

gðxÞ ¼ jxjx; (14)

and

f ðxÞ ¼ �ðx2 � 1Þ: (15)

Since all these conditions of the theorem hold, it follows that Eq. (1) has a unique, stable limit-
cycle.

To calculate an approximation to the periodic (limit-cycle) solution using the method of
harmonic balance [3,5] it is assumed that Eq. (1) has a solution of the form

xðtÞ 	 A cos ðotÞ; (16)

where a priori, A and o are unknown. The Fourier expansion of j cos uj is [3]

cos ðuÞj ¼
4

p
1

2
þ

cos ð2uÞ

3
�

cos ð4uÞ

15
þ 
 
 


� �
: (17)

Therefore,

jxjx 	 jA cos ðotÞjðA cos ðotÞÞ

¼
4A2

p
1

2
þ

cos ð2otÞ

3
�

cos ð4otÞ

15
þ 
 
 


� �
cos ðotÞ

¼
8A2

3p

� �
cos ðotÞ þ (HOH terms); ð18Þ

and

1� x2
� �

x
:
¼ 1� A2 cos2 ðotÞ
� �

�Ao sin ðotÞð Þ

¼ � Ao 1� 1
4
A2

� �
sin ðotÞ þ (HOH terms); ð19Þ
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where HOH stands for higher order-harmonic. Substitution of these results into Eq. (1) gives

�Ao2 þ
8A2

3p

� �
cos ðotÞ ¼ ��Ao 1� 1

4
A2

� �
sin ðotÞ þ (HOH terms). (20)
Fig. 1. Plots of xk and yk versus k; and xk versus yk for e ¼ 0:5; Dt ¼ 0:01; and ðx0; y0Þ ¼ ð0:0; 0:1Þ:
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Fig. 2. Plots of x and y versus k; and x versus y for e ¼ 0:5; Dt ¼ 0:01; and ðx ; y Þ ¼ ð0:0; 4:0Þ:
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Applying the harmonic balance requirements, where the coefficients of cos ot and sin ot are
equated to zero, it follows that

�Ao2 þ
8A2

3p
¼ 0; 1� 1

4
A2 ¼ 0; (21)

k k k k 0 0
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and thus

A ¼ 2; o ¼

ffiffiffiffiffiffi
16

3p

r
: (22)

Therefore, an approximation to the limit-cycle solution is

xðtÞ 	 2 cos

ffiffiffiffiffiffi
16

3p

r
t

 !
: (23)

Finally, we use a nonstandard finite difference numerical integration method [3] to integrate
Eq. (1); this scheme is

xkþ1 ¼ cxk þ fyk; (24a)

ykþ1 ¼ �xkjxkþ1j þ eð1� ðxkþ1Þ
2
Þyk; (24b)

where the step size in time is Dt; xk and yk are, respectively, approximations to xðtkÞ and yðtkÞ; and
tk ¼ ðDtÞk; where k is an integer; and

c ¼ cos ðDtÞ; f ¼ sin ðDtÞ: (25)

The initial conditions for Fig. 1 are: ðx0; y0Þ ¼ ð0; 0:1Þ: This is a case in which the trajectory in the
phase-plane spirals out to approach the limit-cycle. In Fig. 2, the initial conditions are ðx0;y0Þ ¼

ð0; 4Þ and this corresponds to the situation where the trajectories approach the limit-cycle from
outside the limit-cycle. Both results obtained are consistent with the analytical results.

In summary, a nonlinear van der Pol-type equation has been investigated and the following
conclusions were reached:
1.
 For �40; there exists a unique periodic solution; this is the limit-cycle.

2.
 The method of harmonic balance gives an approximation to this solution and it takes the form

xðtÞ ’ 2 cos

ffiffiffiffiffiffi
16

3p

r
t

" #
: (26)

A future problem will be to determine an approximation to the solution which includes the
transients occurring before the limit-cycle behaviour is reached.
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